Annotation:
The article deals with the problem of updating indicators of compromise in the field of information security. One of the key difficulties is the growing number of false positives, which slows down the process of incident investigation. To solve this problem, we propose a model for assessing the relevance of indicators of compromise, the purpose of which is to optimise their use. The developed model takes into account various parameters, such as the indicator obsolescence rate, the level of trust in the source, the frequency of detection, the proportion of false positives, the consideration of information from open sources, and the type of malicious activity. The model reduces the number of false positives and improves the efficiency of incident monitoring.To quote:
M. A. Chizhevsky,, O. V. Serpeninov, A. P. Lapsar OPTIMIZATION OF INDICATOR OF COMPROMISE UTILIZATION IN INFORMATION SECURITY TASKS // Information Security Problems. Computer Systems. 2025. № 1. Pp. 9–20. DOI:10.48612/jisp/t99x-zeux-75erDOI:
10.48612/jisp/t99x-zeux-75erKeywords:
indicator of compromise, relevance, assessment model, relevance dynamics, information securityPages:
9–20Books list ‣‣‣‣:
(Russian)
Annotation:
The paper is devoted to an approach to counter threats of privacy violations in federated learning. The approach is based on optimization methods to transform the weights of local neural network models and create new weights for transmission to the joint gradient descent node, which, in turn, allows to prevent the interception of local model weights by an attacker. Experimental studies have confirmed the effectiveness of the developed approachTo quote:
P. D. Bezborodov, D. S. Lavrova PROTECTING NEURAL NETWORK MODELS FROM PRIVACY VIOLATION THREATS IN FEDERATED LEARNING USING OPTIMIZATION METHODS // Information Security Problems. Computer Systems. 2025. № 1. Pp. 21–29. DOI:10.48612/jisp/fpvk-xpna-9hx5DOI:
10.48612/jisp/fpvk-xpna-9hx5Keywords:
federated learning, neural network models, optimization methods, gradient descentPages:
21–29Books list ‣‣‣‣:
(Russian)
Annotation:
This article examines the problem of the "black box" in artificial intelligence systems, focusing on the role of explanation (revealing cause-and-effect relationships) and interpretation (adapting meaning for the audience) in the context of machine learning. The philosophical foundations of these concepts are presented, along with an overview of modern methods in explainable AI (XAI). The article emphasizes the need to develop common perspectives on the issues of "explainability" and "interpretability" as they apply to machine learning models and the solutions they generate.To quote:
D. N. Biryukov, A. F. Suprun FROM “BLACK BOX” TO TRANSPARENCY: PHILOSOPHICAL AND METHODOLOGICAL FOUNDATIONS OF EXPLAINABILITY AND INTERPRETABILITY IN ARTIFICIAL INTELLIGENCE // Information Security Problems. Computer Systems. 2025. № 1. Pp. 30–42. DOI:10.48612/jisp/x8ve-86ez-fv94DOI:
10.48612/jisp/x8ve-86ez-fv94Keywords:
artificial intelligence, explanation, interpretation, understanding, XAIPages:
30–42Books list ‣‣‣‣:
(Russian)
Annotation:
Modern large language models possess impressive capabilities but remain vulnerable to various attacks that can manipulate their responses, lead to leakage of confidential data, or bypass restrictions. This paper focuses on the analysis of prompt injection attacks, which allow bypassing model constraints, extracting hidden data, or forcing the model to follow malicious instructions.To quote:
I. S. Velichko, S. V. Bezzateev FROM EXPLOITATION TO PROTECTION: A DEEP DIVE INTO ADVERSARIAL ATTACKS ON LLMS // Information Security Problems. Computer Systems. 2025. № 1. Pp. 43–58. DOI:10.48612/jisp/mbvv-n1u7-z7beDOI:
10.48612/jisp/mbvv-n1u7-z7beKeywords:
large language models, artificial intelligence, adversarial attacks, defense methods, model output manipulationPages:
43–58Books list ‣‣‣‣:
(Russian)
Annotation:
The problem of protecting machine learning models used in intrusion detection systems from adversarial attacks is considered. Possible methods of protection against adversarial samples based on data anomaly detectors and an autoencoder are analyzed. The results of an experimental study of protective mechanisms that demonstrated high efficiency in detecting distorting data using a Random Forest model are presented.To quote:
R. B. Kirillov, M. O. Kalinin DETECTING ADVERSARIAL SAMPLES IN INTRUSION DETECTION SYSTEMS USING MACHINE LEARNING MODELS // Information Security Problems. Computer Systems. 2025. № 1. Pp. 59–68. DOI:10.48612/jisp/2741-bb1k-hf3xDOI:
10.48612/jisp/2741-bb1k-hf3xKeywords:
adversarial attack, machine learning security, adversarial sample detection, machine learning, intrusion detection system, Random ForestPages:
59–68Books list ‣‣‣‣:
(Russian)
Annotation:
The article addresses the problem of detecting potentially malicious activity in CI/CD pipelines during the build process through the analysis of runner behavior. The limitations of existing pipeline security tools related to threat detection during build execution are identified, as well as promising approaches to detecting mali-cious activity. A way for detecting potentially malicious activity in pipelines using the eBPF technology for collecting and analyzing runner behavior has been pro-posed. The accuracy of the detection is evaluated using a dataset that contains im-plementations of malicious scenarios related to build process compromise. The re-sults obtained can be used to implement protection tools for CI systems and con-tribute to research in CI/CD pipelines security.To quote:
V. A. Bugaev, E. V. Zhukovskii, A. A. Lyrchikov DETECTION OF POTENTIALLY MALICIOUS ACTIVITY IN CI/CD PIPE-LINES BASED ON ANALYSIS OF RUNNER BEHAVIOR // Information Security Problems. Computer Systems. 2025. № 1. Pp. 69–82. DOI:10.48612/jisp/at5b-46tf-zet9DOI:
10.48612/jisp/at5b-46tf-zet9Keywords:
CI/CD pipelines, DevSecOps, malicious activity, anomaly detection, eBPF, behavioral analysis, syscallsPages:
69–82Books list ‣‣‣‣:
(Russian)
Annotation:
The article is devoted to the development of an approach to identifying vulnerable code using adaptation methods for pre-trained reinforcement machine learning models. A training methodology is presented that includes stages of model adaptation using data from various domains, which ensures high generalization ability of the algorithms. Experimental results have shown the effectiveness of the proposed approach on the popular CWEFix code analysis dataset. The developed approach helps to improve the quality of vulnerability detection and reduce the level of false positives, which makes it a useful tool for ensuring software security.To quote:
A. G. Lomako, N. E. Isaev, A. B. Menisov, T. R. Sabirov AN APPROACH TO IDENTIFYING SOFTWARE CODE VULNERABILITIES BASED ON ADAPTATION WITH REINFORCEMENT LEARNING OF MACHINE LEARNING MODELS // Information Security Problems. Computer Systems. 2025. № 1. Pp. 83–96. DOI:10.48612/jisp/7gnx-9z7f-fbrvDOI:
10.48612/jisp/7gnx-9z7f-fbrvKeywords:
code vulnerabilities, machine learning, reinforcement learning, software analysis, information securityPages:
83–96Books list ‣‣‣‣:
(Russian)
Annotation:
This work investigates approaches for constructing post-quantum digital signature schemes. Contemporary methods for enhancing the security of protocols based on elliptic curve isogenies are analyzed. Multi-signature scheme based on the problem of finding isogenies between supersingular curves with participant authentication is developed. The efficiency and security of the proposed scheme are proved.To quote:
S. O. Kostin, E. B. Aleksandrova MULTIPLE SIGNATURES ON ELLIPTIC CURVE ISOGENIES WITH MASKING AND PARTICIPANT AUTHENTICATION // Information Security Problems. Computer Systems. 2025. № 1. Pp. 97–105. DOI:10.48612/jisp/xvpd-hah6-9a56DOI:
10.48612/jisp/xvpd-hah6-9a56Keywords:
group signature, supersingular elliptic curves, postquantum cryptography, maskingPages:
97–105Books list ‣‣‣‣:
(Russian)
Annotation:
In this paper, we solve the following problem. For a group of n participants, we need to distribute two shares to each of them in such a way that each pair of par-ticipants forms a (3, 4)-threshold access structure. In other words, each pair of participants can find some secret using any 3 out of the 4 shares they have. Ob-viously, this problem has a trivial solution: to share the same secret between eve-ryone using a (3, 2n)-threshold secret sharing scheme. However, of theoretical and practical interest is the case when each pair of participants recovers a secret different from the others. In particular, the solution to this problem is necessary for the key agreement protocol proposed in [1]. In this paper, we find a complete solution to considered problem for Shamir's secret sharing scheme. In addition, non-interactive methods for randomizing the key agreement protocol from [1] are studied. Unfortunately, it turns out that they do not enhance the security of this protocol.To quote:
N. N. Shenets, E. B. Aleksandrova, A. S. Konoplev, N. V. Gololobov GENERAL SOLUTION TO THE SPECIAL PROBLEM OF DISTRIB-UTING SHARES USING SHAMIR’S SECRET SHARING SCHEME // Information Security Problems. Computer Systems. 2025. № 1. Pp. 106–120. DOI:10.48612/jisp/gh7t-814n-e9uzDOI:
10.48612/jisp/gh7t-814n-e9uzKeywords:
key pre-distribution, Shamir’s secret sharing scheme, key agreement protocol, perfectness, threshold cryptographyPages:
106–120Books list ‣‣‣‣:
(Russian)
Annotation:
Considered issues of automation for measuring information archiving received from the OTT PARSIVEL laser disdrometer in form of messages with .dat format. It is shown that .dat format is not convenient for archiving in databases. As a result of performed research, methodology and toolkit was developed for automating the conversion of source messages for subsequent archiving in databases, taking into account the specifics of the SQL query language.To quote:
I. A. Sikarev, V. M. Abramov, K. S. Prostakevich, A. L. Abramova, A. I. Chestnov AUTOMATION OF ARCHIVING FOR ATMOSPHERIC PRECIPITATION MEASUREMENT INFORMATION // Information Security Problems. Computer Systems. 2025. № 1. Pp. 155–163. DOI:10.48612/jisp/r28m-trm5-pfu3DOI:
10.48612/jisp/r28m-trm5-pfu3Keywords:
automation, archiving, databases, disdrometer, autonomous surface vesselsPages:
155–163Books list ‣‣‣‣:
(Russian)
Annotation:
The article considers a network monitoring system for the security of a data transmission network operating under computer influences. One of the most urgent tasks in these conditions is the development of mechanisms for evaluating the effectiveness of network monitoring of data transmission network security from computer influences. A mathematical model and methodology are proposed, where the fundamental difference from the existing ones is a new approach to monitoring the security status of data transmission network elements from computer influences.To quote:
P. A. Novikov, S. A. Dichenko, R. V. Lukyanov, S. V. Polikarenkov, M. L. Martynov A MATHEMATICAL MODEL AND METHODOLOGY FOR EVALUATING THE EFFECTIVENESS OF NETWORK MONITORING OF DATA TRANSMISSION NETWORK SECURITY // Information Security Problems. Computer Systems. 2025. № 1. Pp. 121–131. DOI:10.48612/jisp/pg74-3nxe-fa33DOI:
10.48612/jisp/pg74-3nxe-fa33Keywords:
data transmission network, network security monitoring, computer impacts, efficiency assessmentPages:
121–131Books list ‣‣‣‣:
(Russian)
Annotation:
The features of the functioning of mobile self-organizing networks are considered. Models of node interaction in these networks are analyzed, taking into account protection against network attacks, and their advantages and disadvantages are highlighted. A model of node interaction in a mobile self-organizing network is proposed, considering protection against active network attacks based on early attack detection. Early detection of network attacks is achieved by predicting network parameters and further analyzing them using machine learning methods. A trust model is also used to exclude malicious nodes from the network.To quote:
M. A. Pahomov MODEL OF NODE INTERACTION IN A MOBILE AD-HOC NETWORK CONSIDERING PROTECTION AGAINST ACTIVE NETWORK ATTACKS // Information Security Problems. Computer Systems. 2025. № 1. Pp. 132–144. DOI:10.48612/jisp/a3z4-17n4-4xvfDOI:
10.48612/jisp/a3z4-17n4-4xvfKeywords:
information security, ad-hoc networks, model of node interaction, intrusion detection systemsPages:
132–144Books list ‣‣‣‣:
(Russian)
Annotation:
The task of protecting nodes of a blockchain system from security threats of user deanonymization, access restriction, and imposition of false data about the blockchain state is considered. A method of anonymizing the network traffic between nodes of a blockchain system based on garlic routing, supporting integration with consensus mechanism, has been proposed. As a result of experimental study, it is demonstrated that the presented method allows increasing the safety of blockchain systems applied in large-scale network infrastructures.To quote:
A. K. Skrypnikov, V. M. Krundyshev, M. O. Kalinin ANONYMIZATION OF NETWORK TRAFFIC IN BLOCKCHAIN SYSTEMS BY USING GARLIC ROUTING // Information Security Problems. Computer Systems. 2025. № 1. Pp. 145–154. DOI:10.48612/jisp/nhfh-bxm9-hnh2DOI:
10.48612/jisp/nhfh-bxm9-hnh2Keywords:
deanonymization, blockchain, distributed ledger, network traffic, smart city, garlic routingPages:
145–154Books list ‣‣‣‣:
(Russian)
Annotation:
The main biometric characteristics reflecting changes in the psychoemotional state of the user of the information system are considered. Their ranking was performed using the method of paired comparisons, as a result of which the voice and keyboard handwriting were identified as the most suitable for further research. The criteria for preliminary identification of potential internal information security violators based on changes in the considered biometric characteristics are defined. A convolutional neural network model has been developed and tested to solve this problem.To quote:
S. E. Adadurov, A. A. Kornienko, S. V. Kornienko, E. D. Osipenko ANALYSIS OF THE POSSIBILITIES OF USING BIOMETRIC CHARACTERISTICS TO IDENTIFY A POTENTIAL INTERNAL VIOLATOR BASED ON HIS PSYCHO-EMOTIONAL STATE // Information Security Problems. Computer Systems. 2025. № 2. Pp. 9–20. DOI:10.48612/jisp/tmbk-z2k3-5a16DOI:
10.48612/jisp/tmbk-z2k3-5a16Keywords:
Biometrics, psycho-emotional state, neural network, information securityPages:
9–20Books list ‣‣‣‣:
1. Полякова А. Сравнительный обзор современных UEBA-систем // Блог компании «Биткоп». URL: https://bitcop.ru/blog/obzor-sovremennyh-ueba-sistem (дата обращения: 01.04.2025).
2. Лемешевская З. П., Михальчик С. В., Водоевич В. П. Диагностика психического состояния человека по мимике лица // Журнал ГрГМУ. 2010. № 1 (29). С. 62–67.
3. Барабанщиков В. А. Экспрессии лица и их восприятие. М.: Изд-во «Институт психологии РАН», 2012. 341 с.
4. Зиндлер Л. Р. Общая фонетика. М.: Высшая школа, 1979. 312 с.
5. Ильин Е. П. Эмоции и чувства. СПб: Питер, 2001. 752 с.
6. Баланов А. Н. Биометрия. Разработка и внедрение систем идентификации: учебное пособие для вузов. СПб.: Лань, 2024. 228 с.
7. Корниенко С. В., Пантюхина А. В. Методика выявления потенциальных внутренних нарушителей информационной безопасности // Интеллектуальные технологии на транспорте. 2023. № 2 (34). С. 50–57.
8. Mermelstein P. Distance measures for speech recognition, psychological and instrumental // Pattern recognition and artificial intelligence. 1976. Vol. 116. P. 374–388.
9. Davis S., Mermelstein P. Experiments in syllable-based recognition of continuous speech // IEEE Transcactions on Acoustics, Speech and Signal Processing. 1980. Vol. 28. P. 357–366.
10. Аверин А. И., Сидоров Д. П. Аутентификация пользователей по клавиатурному почерку // Огарев-Online. 2015. № 20 (61). С. 1–5.
11. Li Zewen, Liu Fan, Yang Wenjie et al. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects // IEEE Transactions on Neural Networks and Learning Systems. 2021. P. 1–21. DOI: 10.1109/TNNLS.2021.3084827.
12. Рашид Т. Создаем нейронную сеть. СПб.: ООО «Альфа-книга», 2017. 272 с.
Annotation:
The research focuses on methods for automating security in DevOps pipelines within the DevSecOps framework, emphasizing the integration of tools, processes, and cultural shifts to enhance the security of software products. The research set the following tasks: analysis of modern DevSec- Ops methodologies and tools; assess the potential of using artificial intelligence and machine learning to automate information security tasks; identify the main problems and barriers to integrating DevSecOps into continuous integration and delivery (CI/CD) processes; identify promising areas for automation development in the field of security. The study uses a comparative analytical review method, including an analysis of scientific literature, industrial practices and documentation of modern DevSecOps tools, the Shift-Left Security and Security as Code approaches. Open sources, CI/CD platform documentation, and data on the use of AI in information security were used. The research identifies key principles for integrating security into DevOps: early vulnerability detection, automation of security processes, implementation of Security as Code, and enhanced threat monitoring. Modern DevSecOps tools are reviewed, including static and dynamic code analysis, security policy management systems, secret management solutions, and AI-powered proactive threat detection mechanisms. The study finds that automation minimizes human error, accelerates vulnerability detection and remediation processes, and ensures compliance with regulatory requirements. However, certain limitations were also identified, including the complexity of tool integration, a shortage of DevSecOps specialists, and resistance to changes within development and operations teams. Future trends indicate further advancements in AI-driven solutions and automated frameworks for security management. This research contributes to the field of information security by uncovering methods for automating DevSec- Ops integration into CI/CD processes and exploring the potential of AI for predictive threat analytics. It highlights key trends in security automation within modern cloud and containerized environments.To quote:
A. V. Blinov, S. V. Bezzateev, PROTECTION OF DEVOPS PIPELINES: AUTOMATION OF SECURITY WITHIN DEVSECOPS // Information Security Problems. Computer Systems. 2025. № 2. Pp. 21–34. DOI:10.48612/jisp/nr14-x1nu-r6t9DOI:
10.48612/jisp/nr14-x1nu-r6t9Keywords:
Information security, DevSecOps, secure software development, security integration, security process automation, DevOpsPages:
21–34Books list ‣‣‣‣:
1. Тулеубаева А. А., Норкина А. Н. Современные проблемы информационной безопасности в разработке программного обеспечения // Угрозы и риски финансовой безопасности в контексте цифровой трансформации: Материалы VII Международной научно-практической конференции Международного сетевого института в сфере ПОД/ФТ, 24 ноября 2021 г., Москва, Россия. М.: Национальный исследовательский ядерный университет «МИФИ», 2021. С. 670–676.
2. Селиверстов С. Д., Мироненко Ю. В. Обзор методологии DevSecOps и ее ключевых инструментов для внедрения и обеспечения безопасной разработки ПО // Cтудент года 2024 – сборник статей Международного научно-исследовательского конкурса. Пенза, 2024. C. 107–111.
3. Ганжур М. А., Дьяченко Н. В., Отакулов А. С. Анализ методологий DevOps и DevSecOps // Молодой Исследователь Дона. 2021. № 5 (32). С. 8–10.
4. Kim G., Humble J., Debois P., Willis J. The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in Technology Organizations. Portland: IT Revolution Press, 2016. 644 p.
5. Reddy Chittibala D. DevSecOps: Integrating Security into the DevOps Pipeline // International Journal of Science and Research. 2023. № 12(12). P. 2074–2078. DOI: 10.21275/sr24304171058.
6. Зиновьев Л. Д., Каледа Р. А. Применение методов DevSecOps для интеграции безопасности в каждый этап жизненного цикла программного обеспечения // Информационные технологии в науке и образовании. Проблемы и перспективы: Сборник статей по материалам XI Всероссийской научно-практической конференции, 13 марта 2024 г., Пенза, Россия. Пенза: Пензенский государственный университет, 2024. С. 271–273.
7. Pitchford M. The ‘Shift Left’ Principle // New Electronics. 2021. № 14(54). P. 18–21. DOI: 10.12968/s0047-9624(22)60234-7.
8. What is Security as Code (SaC)? URL: https://www.checkpoint.com/cyber-hub/cloud-security/what-is-security-as-code-sac/ (дата обращения: 28.01.2025).
9. Кузьмина С. П. Роль пайплайнов в современной кибербезопасности: автоматизация, защита и реагирование на угрозы // Интернаука. 2024. № 33–1(350). С. 9–10.
10. Тюменцев Д. В. Безопасность в devops: стратегии и инструменты для защиты инфраструктуры от кибератак // Наукосфера. 2024. № 7–1. С. 51–56. DOI: 10.5281/zenodo.12697570.
11. Container Security Best Practices. URL: https://www.aquasec.com/cloud-native-academy/container-security/ (дата обращения: 28.01.2025).
12. Фатхи В. А., Дьяченко Н. В. Тестирование безопасности приложений // Инженерный вестник Дона. 2021. № 5(77). С. 108–120.
13. Pakalapati N. Unlocking the Power of AI/ML in DevSecOps: Strategies and Best Practices // Journal of Knowledge Learning and Science Technology. 2023. № 2(2). P. 176–188. DOI: 10.60087/jklst.vol2.n2.p188.
14. Enterprise Immune System: AI-Powered Cyber Defense. URL: https://www.darktrace.com/en/products/enterprise-immune-system/ (дата обращения: 28.01.2025).
15. A TensorFlow-Based Production-Scale Machine Learning Platform. URL: https://dl.acm.org/doi/10.1145/3097983.3098021 (дата обращения: 28.01.2025).
16. Almuairfi S. Security controls in infrastructure as code // Computer Fraud & Security. 2020. № 10(2020). P. 13–19. DOI: 10.1016/S1361-3723(20)30109-3.
17. Policy-Based Control for Cloud-Native Environments. URL: https://www.openpolicyagent.org/docs/latest/ (дата обращения: 28.01.2025).
18. Immutable-инфраструктура и ее преимущества. URL: https://habr.com/ru/companies/vk/articles/756152/ (дата обращения: 28.01.2025).
19. Малышев Е. А. Обеспечение информационной безопасности технологического конвейера разработки программного обеспечения // Интерэкспо Гео-Сибирь. 2023. № 2(7). С. 56–62.
20. Vault by HashiCorp. URL: https://www.vaultproject.io/ (дата обращения: 28.01.2025).
21. Deckhouse Stronghold. URL: https://deckhouse.ru/products/stronghold/ (дата обращения: 28.01.2025)
22. Mulpuri G. Security and Secrets Management: Integration of Security Tools Like Vault and Secrets Management into DevOps Workflow // International Journal of Science and Research. 2021. № 9(10). P. 1771–1774. DOI: 10.21275/sr24402110508.
23. Бондарь Д. Е. Автоматизация процессов devsecops в условиях перехода на отечественное ПО: проблемы и решения // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2024. № 10. С. 59–63. DOI: 10.37882/2223-2966.2024.10.07.
Annotation:
The article considers the problem of protecting dynamically changing network infrastructures from cyberattacks, where the key challenge is the exponential growth of the number of potential attack vectors as the network scales. To solve this problem, a model of the defense system based on the principles of multi-criteria optimization is proposed.To quote:
E. V. Zavadskii THE GRAPH MODEL OF A DEFENSE SYSTEM FOR DETECTING MALICIOUS ACTIVITY IN A FUNCTIONAL NETWORK INFRASTRUCTURE // Information Security Problems. Computer Systems. 2025. № 2. Pp. 35–40. DOI:10.48612/jisp/p834-8g6a-un1nDOI:
10.48612/jisp/p834-8g6a-un1nKeywords:
Network security, honeypot, multicriteria optimization, dynamic network, cyberattack, graph modelPages:
35–40Books list ‣‣‣‣:
1. Зегжда Д. П., Александрова Е. Б., Калинин М. О. и др. Кибербезопасность цифровой индустрии. Теория и практика функциональной устойчивости к кибератакам /под ред. Д. П. Зегжды. М.: Горячая линия Телеком, 2020. 560 с.
2. Калинин М. О. Технология контроля функциональной устойчивости управляющих информационных систем машиностроения // Перспективное развитие науки, техники и технологий: сб. науч. статей, мат-лы 4-й междун. науч.-практ. конф. Курск: Юго-Зап. гос. ун-т, 2014. С. 149–151.
3. Analyst report «Managed Detection and Response» 2024. URL: https://content.kaspersky-labs.com/fm/site-editor/9d/9d31b116d9c61340d333fa073facf869/source/mdr-report.pdf (дата обращения: 04.04.2025).
4. Hung-Jen Liaoa, Chun-Hung Richard Lin, Ying-Chih Lina, Kuang-Yuan Tung. Intrusion detection system: A comprehensive review // Journal of network and computer applications. 2013. Vol. 36. № 1. P. 16–24.
5. Martín G. A., Fernández-Isabel A., de Diego I. M., Beltrán M. A survey for user behavior analysis based on machine learning techniques: current models and applications // Applied Intelligence. 2021. Vol. 51. № 8. P. 6029–6055.
6. Marshev I. I., Zhukovskii E. V., Aleksandrova E. B. Protection against adversarial attacks on malware detectors using machine learning algorithms // Automatic Control and Computer Sciences. 2021. Vol. 55. № 8. P. 1025–1028
7. Ranjan R., Kumar S. S. User behaviour analysis using data analytics and machine learning to predict malicious user versus legitimate user // High-confidence computing. 2022. Vol. 2. № 1. P. 100034.
8. Kalinin M., Krundyshev V. Security intrusion detection using quantum machine learning techniques // Journal of Computer Virology and Hacking Techniques. 2022.
9. Статистика CVSS для зарегистрированных уязвимостей. URL: https://www.cvedetails.com/cvss-score-charts.php?fromform=1&vendor_id=&product_id=&startdate=2022-01-01&enddate=2025-04-26&groupbyyear=1 (дата обращения: 04.04.2025).
10. Provos N. A Virtual Honeypot Framework // USENIX Security Symposium. 2004. Vol. 173. № 2004. P. 1–14.
11. Cohen F. The use of deception techniques: Honeypots and decoys // Handbook of Information Security. 2006. Vol. 3. № 1. P. 646–655.
12. Nawrocki M., Wahlisch M., Schmidt T. C. et al. A survey on honeypot software and data analysis // arXiv preprint arXiv:1608.06249. 2016.
13. Anwar A. H., Kamhoua C., Leslie N. Honeypot allocation over attack graphs in cyber deception games // 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020. P. 502–506.
14. Sayed M. A., Anwar A., Kiekintveld C., Kamhoua C. Honeypot allocation for cyber deception in dynamic tactical networks: A game theoretic approach // International Conference on Decision and Game Theory for Security. Cham: Springer Nature Switzerland, 2023. P. 195–214.
15. Osman M., Nadeem T., Hemida A., Kamhoua C. Optimizing honeypot placement strategies with graph neural networks for enhanced resilience via cyber deception // Proceedings of the 2nd on Graph Neural Networking Workshop 2023. 2023. P. 37–43.
16. Zhang Y., Di C., Han Z. et al. An adaptive honeypot deployment algorithm based on learning automata // 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC). IEEE, 2017. P. 521–527.
17. Ovasapyan T. D., Nikulkin V. A., Moskvin D. A. Applying honeypot technology with adaptive behavior to Internet-of-Things networks // Automatic Control and Computer Sciences. 2021. Vol. 55. № 8. P. 1104–1110.
18. Fraunholz D., Schotten H. D. Strategic defense and attack in deception based network security // 2018 International Conference on Information Networking (ICOIN). IEEE, 2018. P. 156–161.
19. Москвин Д. А., Овасапян Т. Д., Никулкин В. А. Адаптивное управление honeypot-системами для обеспечения кибербезопасности устройств Интернета вещей // Защита информации. Инсайд. 2022. № 2 (104). С. 16–21.
20. Zaman M. M. U., Tao L., Maldonado M. et al. Optimally Blending Honeypots into Production Networks: Hardness and Algorithms // International Conference on Science of Cyber Security. Cham: Springer Nature Switzerland, 2023. P. 285–304.
Annotation:
The article presents a study aimed at developing a model of Portable Executable files containing malicious code. The model is built based on static analysis methods and includes 333 classification features, formed using a training dataset of 34,026 PE files, comprising 17,992 malicious and 16,034 legitimate files. The proposed model introduces an approach for describing features using a differentiated assessment of their importance. Experimental results with binary feature description methods confirmed that incorporating feature importance levels improves classification accuracy. Additionally, it is demonstrated that optimizing the feature space using principal component analysis (PCA) and the isolation forest method allows reducing the number of features to 40 of the most informative ones without significant accuracy loss. The obtained results provide high classification accuracy with lower computational costs. The scientific significance of the work lies in expanding the methodological capabilities of static analysis, ensuring a deeper understanding of threats and enhancing the reliability of mechanisms for counteracting malicious software.To quote:
A. V. Kozachok, S. S. Matovykh THE STRUCTURAL MODEL OF PORTABLE EXECUTABLE FILES CONTAINING MALICIOUS CODE // Information Security Problems. Computer Systems. 2025. № 2. Pp. 41–59. DOI:10.48612/jisp/pdu2-fvxz-g5d3DOI:
10.48612/jisp/pdu2-fvxz-g5d3Keywords:
Static analysis, malware detection, machine learning, PE files, feature importance assessment, dimension reduction methodsPages:
41–59Books list ‣‣‣‣:
1. Матовых С. С. Классификация вредоносного программного обеспечения, распространяемого через исполняемые файлы формата PE // III национальная научно-практическая конференция «Фундаментальные, поисковые, прикладные исследования и инновационные проекты», 27–28 мая 2024 г., Калининград, Россия. 2024. C. 154–158.
2. Yuk C. K., Seo C. J. Static Analysis and Machine Learning-based Malware Detection System using PE Header Feature Values // International Journal of Innovative Research and Scientific Studies. 2022. № 5(4). P. 281–288. DOI: 10.53894/ijirss.v5i4.690
3. Jiaxuan G., Junfeng W., Zhiyang F. et al. A survey of strategy-driven evasion methods for PE malware: Transformation, concealment, and attack // Computer and Security. 2024. Vol. 137. № 103595. DOI: 10.1016/j.cose.2023.103595
4. García D. E., DeCastro-García N. Optimal feature configuration for dynamic malware detection // Computer and Security. 2021. Vol. 105. № 102250. DOI: 10.1016/j.cose.2021.102250
5. Yousuf M. I., Anwer I., Riasat A. et al. Windows malware detection based on static analysis with multiple features // J Computer Science. 2023. Vol. 9. № e1319. DOI: 10.7717/peerj-cs.1319.
6. Chen Z., Zhang X., Kim S. A Learning-based Static Malware Detection System with Integrated Feature // Intelligent Automation and Soft Computing. 2021. Vol. 27. P. 891–908. DOI: 10.32604/iasc.2021.016933.
7. Baker del Aguila R., Contreras-Pérez C. D., Silva-Trujillo A. G. et al. Static Malware Analysis Using Low-Parameter Machine Learning Models // Computers. 2024. Vol. 13. № 3. № 59. DOI: 10.3390/computers13030059.
8. Saleh M. A. Malware Detection Approaches Based on Operation Codes (OpCodes) of Executable Programs: A Review // Indonesian Journal of Electrical Engineering and Informatics. 2023. Vol. 11. № 2. P. 570–585. DOI: 10.52549/ijeei.v11i2.4454.
9. Samantray O. P., Tripathy S. N. An opcode-based malware detection model using supervised learning algorithms // International Journal of Information Security and Privacy. 2021. Vol. 15. № 4. P. 18–30. DOI: 10.4018/IJISP.2021100102.
10. Yeboah P. N., Amuquandoh S. K., Musah H. B. B. Malware Detection Using Ensemble N-gram Opcode Sequences // International Journal of Interactive Mobile Technologies. 2021. Vol. 15. № 24. P. 19–31. DOI: 10.3991/ijim.v15i24.25401.
11. Abusitta A., Li M. Q., Fung B. C. M. Malware classification and composition analysis: A survey of recent developments // Journal of Information Security and Applications. 2021. Vol. 59. № 102828. DOI: 10.1016/j.jisa.2021.102828.
12. Wu X., Song Y., Hou X. et al. Deep Learning Model with Sequential Features for Malware Classification // Applied Sciences. 2022. Vol. 12. № 19. № 9994. DOI: 10.3390/app12199994.
13. Zhu X., Huang J., Wang B., Qi C. Malware homology determination using visualized images and feature fusion // PeerJ Computer Science. 2021. Vol. 7. № e494. DOI: 10.7717/peerj-cs.494.
14. Kim S., Yeom S., Oh H. et al. Automatic malicious code classification system through static analysis using machine learning // Symmetry. 2021. Vol. 13. № 1. P. 35. DOI: 10.3390/sym13010035.
15. Damaševičius R., Venčkauskas A., Toldinas J., Grigaliūnas Š. Ensemble-based classification using neural networks and machine learning models for Windows PE malware detection // Electronics. 2021. Vol. 10. № 4. № 485. DOI: 10.3390/electronics10040485.
16. Le D. Ch., Pham M. H., Dinh Ch. Z., Do Kh. F. Применение алгоритмов машинного обучения для обнаружения вредоносных программ в операционной системе Windows с помощью PE-заголовка // Информационно-управляющие системы. 2022. № 4. С. 44–57. DOI: 10.31799/1684-8853-2022-4-44-57.
17. Егоров Е. В. Статический анализ методов инфицирования файлов PE-формата операционных систем Windows // Известия Тульского гос. ун-та. Технические науки. 2024. № 1. С. 83–92.
18. Alkhateeb E., Ghorbani A., Habibi Lashkari A. Identifying Malware Packers through Multilayer Feature Engineering in Static Analysis // Information. 2024. Vol. 15. № 2. № 102. DOI: 10.3390/info15020102.
19. Aslan O., Samet R. A comprehensive review on malware detection approaches // IEEE Access. 2020. Vol. 8. P. 6249–6271. DOI: 10.1109/ACCESS.2019.2963724.
20. Kozachok A. V., Kozachok V. I. Construction and evaluation of the new heuristic malware detection mechanism based on executable files static analysis // J Comput Virol Hack Tech. 2018. № 14. P. 225–231. DOI: 10.1007/s11416-017-0309-3.
Annotation:
Paper reviews a mining algorithm in smart city’s blockchain systems with the Proof-of-Work consensus mechanism. Related studies in the field of detecting selfish mining attacks are reviewed. A method for protecting blockchain from selfish mining is presented. A plug-in for detecting selfish mining for the miner software is developed which allows analyzing patterns in data coming from the mining pool. The proposed solution outperforms other selfish mining detectors as it allows identifying the attacking pool and has lower error rates.To quote:
A. S. Konoplev, M. O. Kalinin PROTECTION OF BLOCKCHAIN SYSTEMS OF SMART CITIES AGAINST A SELFISH MINING ATTACK // Information Security Problems. Computer Systems. 2025. № 2. Pp. 60–70. DOI:10.48612/jisp/xr4n-7z4e-pumpDOI:
10.48612/jisp/xr4n-7z4e-pumpKeywords:
Blockchain, prevention, security, selfish mining, smart cityPages:
60–70Books list ‣‣‣‣:
1. Печенкин А. И., Полтавцева М. А., Лаврова Д. С. An approach to data normalization in the Internet of Things for security analysis // Программные продукты и системы. 2016. № 2. С. 83–88.
2. Москвин Д. А., Овасапян Т. Д., Никулкин В. А. Адаптивное управление honeypot-системами для обеспечения кибербезопасности устройств Интернета вещей // Защита информации. Инсайд. 2022. № 2 (104). С. 16–21.
3. Waseem Anwar R., Ali S. Smart cities security threat landscape: A review // Computing and Informatics. 2022. Vol. 41. P. 405–423.
4. Biswas S., Yao Z., Yan L. et al. Interoperability benefits and challenges in smart city services: Blockchain as a solution // Electronics (Switzerland). 2023. Vol. 12. № 12041036.
5. Hakak S., Khan W. Z., Gilkar G. A. et al. Securing smart cities through blockchain technology: Architecture, requirements, and challenges // IEEE Network. 2020. Vol. 34. P. 8–14.
6. Khalil U., Uddin M., Malik O. A., Hussain S. A blockchain footprint for authentication of IoT-enabled smart devices in smart cities: State-of-the-art advancements, challenges and future research directions // IEEE Access. 2022. Vol. 10. P. 76805–76823.
7. Zegzhda D. P., Moskvin D. A., Myasnikov A. V. Assurance of cyber resistance of the distributed data storage systems using the blockchain technology // Automatic Control and Computer Sciences. 2018. Vol. 52. № 8. P. 1111–1116.
8. Aggarwal V. Gagandeep. Review of security aspects of 51 percent attack on blockchain // Lecture Notes in Networks and Systems. 2022. Vol. 256. P. 236–243.
9. Eyal I., Sirer E. G. Majority is not enough: bitcoin mining is vulnerable // Communications of the ACM. 2018. Vol. 61. № 7. P. 95–102.
10. Peterson M., Andel T., Benton R. Towards detection of selfish mining using machine learning // International Conference on Cyber Warfare and Security. 2022. Vol. 17. P. 237–243.
11. Kang H., Chang X., Yang R. et al. Understanding selfish mining in imperfect Bitcoin and Ethereum networks with extended forks // IEEE Transactions on Network and Service Management. 2021. Vol. 18. № 3. P. 3079–3091.
12. Saad M., Njilla L., Kamhoua C., Mohaisen A. Countering selfish mining in blockchains // International Conference on Computing, Networking and Communications, ICNC 2019. 2019. P. 360–364.
13. Wang Z., Lv Q., Lu Z. et al. ForkDec: Accurate Detection for Selfish Mining Attacks // Security and Communication Networks. 2021. Vol. 2021.
14. Chicarino V., Albuquerque C., Jesus E., Rocha A. On the detection of selfish mining and stalker attacks in blockchain networks // Annales des Telecommunications/Annals of Telecommunications. 2020. Vol. 75. № 3–4. P. 143–152.
15. Khan M. I. Deep reinforcement learning for selfish nodes detection in a blockchain // French Regional Conference on Complex Systems. 2023.
16. Ritz F., Zugenmaier A. The Impact of Uncle Rewards on Selfish Mining in Ethereum // IEEE European Symposium on Security and Privacy Workshops, EURO S and PW 2018. 2018. P. 50–57.
17. Tosh D. K., Shetty S., Liang X. et al. Security implications of blockchain cloud with analysis of block withholding attack // IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017. 2017. P. 458–467.
18. Zhang R., Preneel B. Publish or perish: A backward-compatible defense against selfish mining in bitcoin // Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2017. Vol. 10159. P. 277–292.
19. Jahromi N., Saghiri A. M., Meybodi M. R. Vdhla: Variable depth hybrid learning automaton. Its application to defense against the selfish mining attack in bitcoin // arXiv preprint arXiv:2302.12096. 2023.
20. Kędziora M., Kozłowski P., Szczepanik M., Jóźwiak P. Analysis of blockchain selfish mining attacks // Advances in intelligent systems and computing. 2020. Vol. 1050. P. 231–240.
21. Past and future of bitcoin mining protocols: Stratum V2 overview // Braiins Systems s.r.o., Prague, Czech Republic. URL: https://braiins.com/blog/past-and-future-of-bitcoin-mining-protocols-stratum-v2-overview (дата обращения: 27.03.2025).
22. Lee S., Kim S. Rethinking selfish mining under pooled mining // ICT Express. 2023. Vol. 9. № 3. P. 356–361.
23. Александрова Е. Б., Ярмак А. В. Иерархическая групповая аутентификация для защищенного взаимодействия узлов в промышленном Интернете вещей // Защита информации. Инсайд. 2021. № 2 (98). С. 23–27.
Annotation:
The rapid evolution of self-driving vehicles (SDVs) has necessitated the development of robust authentication mechanisms to ensure secure and privacy-preserving vehicle communication. Traditional authentication protocols often expose vehicle location information, raising concerns about tracking and unauthorized surveillance. This paper proposes a novel Zero-Knowledge Proof (ZKP)-enhanced Elliptic Curve Decisional Diffie-Hellman (ECDDH) authentication framework that enables SDVs to prove their presence within a geofenced area without revealing their exact location. The proposed protocol leverages 5G-enabled edge computing to optimize computational efficiency and authentication latency while ensuring scalability in high-density vehicular networks. The proposed framework is formally validated using BAN logic, proving its resilience against replay attacks, location spoofing, and unauthorized access. Performance evaluations conducted in MATLAB demonstrate the efficiency of the protocol, with results indicating an authentication latency of approximately 54.7 ms (100 vehicles), a constant communication overhead of 448 bytes per session, and a 100 % authentication success rate. Comparative analysis with ECDH and RSA-based authentication schemes highlights the protocol’s superior security guarantees and optimized communication overhead. The findings confirm that the proposed authentication mechanism is an effective solution for ensuring privacy-preserving authentication in autonomous vehicular networks, making it a viable approach for securing future intelligent transportation systems.To quote:
M. S. Saeed LOCATION PRIVACY AND SECURITY IN SELF-DRIVING VEHICLES: A ZKP-ENHANCED ECDDH BASED AUTHENTICATION FRAMEWORK // Information Security Problems. Computer Systems. 2025. № 2. Pp. 71–85. DOI:10.48612/jisp/a48u-v6vu-1x81DOI:
10.48612/jisp/a48u-v6vu-1x81Keywords:
Self-driving vehicles, authentication protocol, zero-knowledge proof, 5G-enabled edge computing, privacy-preserving authentication, autonomous vehicular networkPages:
71–85Books list ‣‣‣‣:
1. El-Rewini Z., Sadatsharan K., Selvaraj D. F. et al. Cybersecurity challenges in vehicular communications // Vehicular Communications. 2020. № 23. № 100214. DOI: 10.1016/j.vehcom.2019.100214.
2. Chowdhury A., Karmakar G., Kamruzzaman J. et al. Attacks on Self-Driving Cars and Their Countermeasures: A Survey // IEEE Access. 2020. Vol. 8. P. 207308–207342. DOI: 10.1109/ACCESS.2020.3037705.
3. Suo D., Moore J., Boesch M. et al. Location-Based Schemes for Mitigating Cyber Threats on Connected and Automated Vehicles: A Survey and Design Framework // IEEE Transactions on Intelligent Transportation Systems. 2022. Vol. 23. № 4. P. 2919–2937. DOI: 10.1109/TITS.2020.3038755.
4. Li F., McMillin B. A Survey on Zero-Knowledge Proofs // Advances in Computers. 2013. № 94. P. 25–69. DOI: 10.1016/B978-0-12-800161-5.00002-5.
5. Sierra J. M., Hernández J. C., Alcaide A., Torres J. Validating the Use of BAN LOGIC // Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004). Springer, Berlin, Heidelberg, 2004. Vol. 3043. DOI: 10.1007/978-3-540-24707-4_98.
6. Mejri M. N., Ben-Othman J., Hamdi M. Survey on VANET security challenges and possible cryptographic solutions // Vehicular Communications. 2014. № 1(2). P. 53–66. DOI: 10.1016/j.vehcom.2014.05.001.
7. Aljumaili A., Trabelsi H., Jerbi W. A Review on Secure Authentication Protocols in IOV: Algorithms, Protocols, and Comparisons // 2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkiye. 2023. Pp. 1–11. DOI: 10.1109/ISMSIT58785.2023.10304917.
8. Manson E., Mood R. Elliptic Curve Cryptography in Vehicle Security // TechRxiv. 2025. DOI: 10.36227/techrxiv.173611692.29943420/v1
9. Grnac A., Valocky F., Orgon M. Implementation of Elliptic Curve Cryptography Between Autonomous Vehicles and Control Center // Software Engineering and Algorithms: Proceedings of 10th Computer Science On-line Conference. 2021. Vol. 1. P. 718–729.
10. Wang J., Li J., Wang H. et al. Dynamic Scalable Elliptic Curve Cryptographic Scheme and Its Application to In-Vehicle Security // IEEE Internet of Things Journal. 2019. Vol. 6. № 4. P. 5892–5901. DOI: 10.1109/JIOT.2018.2869872.
11. Zhang J., Cui J., Zhong H. et al. PA-CRT: Chinese Remainder Theorem Based Conditional Privacy-Preserving Authentication Scheme in Vehicular Ad-Hoc Networks // IEEE Transactions on Dependable and Secure Computing. 2021. Vol. 18. № 2. P. 722–735. DOI: 10.1109/TDSC.2019.2904274.
12. Zhong Hong, Han Shunshun, Cui Jie et al. Privacy-Preserving Authentication Scheme with Full Aggregation in VANET // Information Sciences. 2018. № 476. DOI: 10.1016/j.ins.2018.10.021.
13. Chatzigiannakis I., Pyrgelis A., Spirakis P. G., Stamatiou Y. C. Elliptic Curve Based Zero Knowledge Proofs and their Applicability on Resource Constrained Devices // 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain. 2011. P. 715–720. DOI: 10.1109/MASS.2011.77.
14. Xie Chulin, Cao Zhong, Long Yunhui et al. Privacy of Autonomous Vehicles: Risks, Protection Methods, and Future Directions. 2022. DOI: 10.48550/arXiv.2209.04022.
15. Qi C. A Zero-Knowledge Proof of Digital Signature Scheme Based on the Elliptic Curve Cryptosystem // 2009 Third International Symposium on Intelligent Information Technology Application, Nanchang, China. 2009. P. 612–615. DOI: 10.1109/IITA.2009.505.
16. Sah C. P. Robustness Analysis of Zero-Knowledge Proofs using RSA for IoT Devices // 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India. 2023. P. 287–292.
17. Jadhav S. P., Balabanov G., Poulkov V., Shaikh J. R. Enhancing the Security and Efficiency of Resource Constraint Devices // 2020 International Conference on Industry 4.0 Technology (I4Tech), Pune, India. 2020. P. 163–166. DOI: 10.1109/I4Tech48345.2020.9102639.
18. Xi N., Li W., Jing L., Ma J. ZAMA: A ZKP-Based Anonymous Mutual Authentication Scheme for the IoV // IEEE Internet of Things Journal. 2022. Vol. 9. № 22. P. 22903–22913. DOI: 10.1109/JIOT.2022.3186921.
19. Hataba M., Sherif A., Mahmoud M. et al. Security and Privacy Issues in Autonomous Vehicles: A Layer-Based Survey // IEEE Open Journal of the Communications Society. 2022. Vol. 3. P. 811–829. DOI: 10.1109/OJCOMS.2022.3169500.
20. Ni J., Lin X., Shen X. Toward Privacy-Preserving Valet Parking in Autonomous Driving Era // IEEE Transactions on Vehicular Technology. 2019. Vol. 68. № 3. P. 2893–2905. DOI: 10.1109/TVT.2019.2894720.
21. Zhang J., Zhen W., Xu M. An Efficient Privacy-Preserving Authentication Protocol in VANETs // 2013 IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks, Dalian, China. 2013. P. 272–277. DOI: 10.1109/MSN.2013.31.
22. Zhang Jing, Zhong Hong, Cui Jie et al. Edge Computing-Based Privacy-Preserving Authentication Framework and Protocol for 5G-Enabled Vehicular Networks // IEEE Transactions on Vehicular Technology. 2020. P. 1–1. DOI: 10.1109/TVT.2020.2994144.
23. Roeschlin M., Vaas C., Rasmussen K. B., Martinovic I. Bionyms: Driver-centric Message Authentication using Biometric Measurements // 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan. 2018. P. 1–8. DOI: 10.1109/VNC.2018.8628359.
Annotation:
The principles of construction and functioning of honeypot systems are investigated. The existing detection methods are analyzed, their advantages and disadvantages are highlighted. A detection method based on the analysis of command execution delays is proposed. A universal detection method based on combining the results of the methods is proposed. A software prototype of the detection system is developed and tested.To quote:
D. A. Ponomarev, T. D. Ovasapyan, D. V. Ivanov IDENTIFICATION OF HONEYPOT-SYSTEMS ON THE BASIS OF COMPLEX ANALYSIS OF NODE PERFORMANCE INDICATORS // Information Security Problems. Computer Systems. 2025. № 2. Pp. 86–95. DOI:10.48612/jisp/pt1x-pv69-nzftDOI:
10.48612/jisp/pt1x-pv69-nzftKeywords:
Honeypot, latency analysis, detection, network stackPages:
86–95Books list ‣‣‣‣:
1. Spherical Insights. Advanced Persistent Threat Protection Market Size, Share, and COVID-19 Impact Analysis. URL: https://www.sphericalinsights.com/ru/reports/advanced-persistent-threat-protection-market (дата обращения: 10.04.2025).
2. Mukkamala S., Yendrapalli K., Basnet R. et al. Detection of virtual environments and low interaction honeypots // 2007 IEEE SMC Information Assurance and Security Workshop. IEEE, 2007. P. 92–98.
3. Fu X., Yu W., Cheng D. et al. On recognizing virtual honeypots and countermeasures // 2006 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing. IEEE, 2006. P. 211–218.
4. Dornseif M., Holz T., Klein C. N. Nosebreak-attacking honeynets // Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop, 2004. IEEE, 2004. P. 123–129.
5. Defibaugh-Chavez P., Veeraghattam R., Kannappa M. et al. Network based detection of virtual environments and low interaction honeypots // 2006 IEEE Information Assurance Workshop. 2006.
6. Zamiri-Gourabi M. R., Qalaei A. R., Azad B. A. Gas what? i can see your gaspots. studying the fingerprintability of ics honeypots in the wild // Proceedings of the fifth annual industrial control system security (icss) workshop. 2019. P. 30–37.
7. Krawetz N. Anti-honeypot technology // IEEE Security & Privacy. 2004. Vol. 2. № 1. P. 76–79.
8. Zavadskii E. V., Ivanov D. V. Implementation of honeypot systems based on the potential attack graph // Automatic Control and Computer Sciences. 2021. Vol. 55. № 8. P. 1194–1200.
9. Uitto J., Rauti S., Lauren S., Leppanen V. A survey on anti-honeypot and anti-introspection methods // Recent Advances in Information Systems and Technologies: Vol. 2 – 5. Springer International Publishing, 2017. P. 125–134.
10. Javadpour A., Ja’fari F., Taleb T. et al. A comprehensive survey on cyber deception techniques to improve honeypot performance // Computers & Security. 2024. P. 103792.
11. Lackner P. How to Mock a Bear: Honeypot, Honeynet, Honeywall & Honeytoken: A Survey // ICEIS (2). 2021. С. 181–188.
12. Danilov V. D., Ovasapyan T., Ivanov D. V. et al. Generation of Synthetic Data for Honeypot Systems Using Deep Learning Methods // Automatic Control and Computer Sciences. 2022. Vol. 56. № 8. P. 916–926.
13. Franco J., Arış A., Canberk B., Uluagac S. A survey of honeypots and honeynets for internet of things, industrial internet of things, and cyber-physical systems // IEEE Communications Surveys & Tutorials. 2021. Vol. 23. № 4. P. 2351–2383.
14. Naeem A. A. N. Honeypots: Concepts, Approaches and Challenges. 2021.
15. Nyamugudza T., Rajasekar V., Sen P. et al. Network traffic intelligence using a low interaction honeypot // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017. Vol. 263. № 4. P. 042096.
16. Karthikeyan R., Geetha D. T., Vijayalakshmi S., Sumitha R. Honeypots for network security // International journal for Research & Development in Technology. 2017. Vol. 7. № 2. P. 62–66.
17. Ovasapyan T. D., Nikulkin V. A., Moskvin D. A. Applying honeypot technology with adaptive behavior to internet-of-things networks // Automatic Control and Computer Sciences. 2021. Vol. 55. № 8. P. 1104–1110.
18. OneClassSVM. URL: https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html (дата обращения: 08.04.2025).
19. IsolationForest. URL: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html (дата обращения: 08.04.2025).
Annotation:
In several publications, a theoretical basis for a universal data model has been proposed, but its practical implementation has been considered only at the level of a general preliminary sketch. Many questions remain open, which complicates the creation of real systems implementing this model. In particular, the issue of processing queries to data presented in various traditional data models and stored in a system based on a universal data model has not been studied. The purpose of the study is to develop a method for implementing a system for processing queries to data presented in various traditional models and jointly stored in a universal data model, as well as to develop the architecture of such a query processing system. The article presents the results of an analysis of existing query handlers to assess the possibility of their use, and proposes a method for integrating query handlers in MDX, SQL, and Cypher into a single data management system based on an archigraph DBMS. An architecture is presented that allows unifying access and query processing to heterogeneous data, such as relational tables, multidimensional cubes, vertices, and edges of property graphs. The results obtained were used in developing the first prototype of the system. This opens prospects for further development and implementation of the universal data model and its varieties in various information systems, improving their flexibility and efficiency.To quote:
А. A. Vetoshkin, A. R. Mironova, А. S. Zenger, A. А. Sukhobokov, B. S. Goryachkin QUERY PROCESSING IN DATA LAKE MANAGEMENT SYSTEM BASED ON A UNIVERSAL DATA MODEL // Information Security Problems. Computer Systems. 2025. № 2. Pp. 96–111. DOI:10.48612/jisp/2h69-rvkz-97ddDOI:
10.48612/jisp/2h69-rvkz-97ddKeywords:
Archigraph, archigraph DBMS, Data Lake, Data Lake Management System, query handler, SQL, MDX, CypherPages:
96–111Books list ‣‣‣‣:
1. Pasupuleti P., Purra B. S. Data Lake development with big data. Birmingham, UK: Packt Publishing Ltd, 2015. 137 p.
2. Miloslavskaya N., Tolstoy A. Big data, fast data and data lake concepts // Procedia Computer Science. 2016. Vol. 88. P. 300–305. DOI: 10.1016/j.procs.2016.07.439.
3. Sawadogo P. N., Darmont J. On data lake architectures and metadata management // Journal of Intelligent Information Systems. 2021. Vol. 56. № 1. DOI: 10.1007/s10844-020-00608-7.
4. Serra J. Deciphering Data Architectures. Sebastopol, CA, USA: O’Reilly Media, Inc., 2024. 147 p.
5. Sukhobokov A. A., Gapanyuk Y. E., Zenger A. S., Tsvetkova A. K. The concept of an intelligent data lake management system: machine consciousness and a universal data model // Procedia Computer Science. 2022 Vol. 213. P. 407–414. DOI: 10.1016/j.procs.2022.11.085.
6. Sukhobokov A. A., Gapanyuk Y. E., Vetoshkin A. A. et al. Universal data model as a way to build multi-paradigm data lakes. // 2024 the 9th International Conference on Big Data Analytics (ICBDA). 2024. P. 203–211. DOI: 10.1109/ICBDA61153.2024.10607189.
7. Сухобоков А. А., Афанасьев Р. А., Балабас А. Г. и др. Первая стадия эксперимента по оценке производительности мультипарадигмальных озер данных // Естественные и технические науки. 2023. № 7(182). С. 124–133. DOI: 10.25633/ETN.2023.07.08.
8. Кручинин С. В. О некоторых обобщениях графов: мультиграфы, гиперграфы, метаграфы, потоковые и портовые графы, протографы, архиграфы // Вопросы науки. 2017. № 3. С. 48–67. URL: https://elibrary.ru/download/elibrary_32627955_58725411.pdf (дата обращения: 24.01.2025).
9. Кручинин С. В. Протографы и архиграфы как обобщение графов // Научно-исследовательские публикации. 2017. № 3(41). С. 23–33. URL: https://www.elibrary.ru/download/elibrary_30637766_39362008.pdf (дата обращения: 24.01.2025).
10. Tarassov V. B., Gapanyuk Y. E. Complex graphs in the modeling of multi-agent systems: From goal-resource networks to fuzzy metagraphs // Artificial Intelligence. RCAI 2020. Lecture Notes in Computer Science. 2020. Vol. 12412. P. 177–198. DOI: 10.1007/978-3-030-59535-7_13.
11. Gapanyuk Y. E. The development of the metagraph data and knowledge model // The 10th International Conference on Integrated Models and Soft Computing in Artificial Intelligence IMSC-2021. CEUR Workshop Proceedings. 2021. Vol. 2965. P. 1–7. URL: https://ceur-ws.org/Vol-2965/paper01.pdf. (дата обращения: 24.01.2025).
12. Guo Q., Zhang C., Zhang S., Lu J. Multi-model query languages: taming the variety of big data // Distributed and Parallel Databases. 2024. Vol. 42. № 1. P. 31–71. DOI: 10.1007/s10619-023-07433-1.
13. Guo Q., Lu J., Zhang C. et al. Multi-model data query languages and processing paradigms // Proceedings of the 29th ACM International Conference on Information & Knowledge Management. CIKM’20. 2020. P. 3505–3506. DOI: 10.1145/3340531.3412174.
14. Uotila V., Lu J., Gawlick D. et al. MultiCategory: Multi-model Query Processing Meets Category Theory and Functional Programming // arXiv preprint arXiv:2109.00929. 2021. DOI: 10.48550/arXiv.2109.00929.
15. Uotila V., Lu J., Gawlick D. et al. Multi-model Query Processing Meets Category Theory and Functional Programming // Proceedings of the 2nd Workshop on Search, Exploration, and Analysis in Heterogeneous Datastores (SEA-Data 2021) co-located with 47th International Conference on Very Large Data Bases (VLDB 2021). CEUR Workshop Proceedings. 2021. Vol. 2929. P. 48–49. URL: https://ceur-ws.org/Vol-2929/poster6.pdf (дата обращения: 24.01.2025).
16. Bondiombouy C., Valduriez P. Query processing in multistore systems: an overview // International Journal of Cloud Computing. 2016. Vol. 5. №. 4. P. 309–346. DOI: 10.1504/IJCC.2016.080903.
17. Ерохин И. А., Грунин Н. С., Молчанов А. В. и др. Способ хранения метаграфовой модели данных в СУБД Postgresql // Искусственный интеллект в автоматизированных системах управления и обработки данных: Сборник статей Всероссийской научной конференции. В 2-х томах, 27–28 апреля 2022 г., Москва, Россия. М.: Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет), 2022. Т. 1. С. 177–198.
18. Chernenkiy V. M., Gapanyuk Y. E., Kaganov Y. T. et al. Storing metagraph model in relational, document-oriented, and graph databases // Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2018. CEUR Workshop Proceedings. 2018. Vol. 2277. P. 82–89. URL: https://ceur-ws.org/Vol-2277/paper17.pdf (дата обращения: 24.01.2025).
19. Сухобоков А. А., Труфанов В. А., Столяров Ю. А. и др. Распределенная метаграфовая СУБД на основе технологии Блокчейн // Естественные и технические науки. 2021. № 7(158). С. 201–209. DOI: 10.25633/ETN.2021.07.15.
20. Massri M., Raipin P., Meye P. GDBAlive: A Temporal Graph Database Built on Top of a Columnar Data Store // Journal of Advances in Information Technology. 2021. Vol. 12. № 3. P. 169–178. DOI: 10.12720/jait.12.3.169-178.
21. Higdon R., Haynes W., Stanberry L. et al. Unraveling the Complexities of Life Sciences Data // Big Data. 2013. Vol. 1. № 1. P. 42–50. DOI: 10.1089/big.2012.1505.
22. Silva B., Moreira J., Costa R. L. Logical big data integration and near real-time data analytics // Data & Knowledge Engineering. 2023. Vol. 146. № 102185. DOI: 10.1016/j.datak.2023.102185.
23. BigDAWG Polystore. URL: https://bigdawg.mit.edu/ (дата обращения: 24.01.2025).
24. Ramadhan H., Indikawati F. I., Kwon J., Koo B. MusQ: a Multi-store query system for iot data using a datalog-like language // IEEE Access 8. 2020. P. 58032–58056. DOI: 10.1109/ACCESS.2020.2982472.
25. Kolev B., Valduriez P., Bondiombouy C. et al. CloudMdsQL: querying heterogeneous cloud data stores with a common language // Distributed and parallel database. 2016. Vol. 34. № 4. P. 463–503. DOI: 10.1007/s10619-015-7185-y.
26. Citus Documentation. URL: https://docs.citusdata.com/en/v12.1/index.html (дата обращения: 24.01.2025).
27. Overview. Apache Phoenix. URL: https://phoenix.apache.org/index.html (дата обращения: 24.01.2025).
28. Apache Hive. URL: https://hive.apache.org/ (дата обращения: 24.01.2025).
29. Apache Impala Guide. URL: https://impala.apache.org/docs/build/plain-html/index.html (дата обращения: 24.01.2025).
30. Apache Spark. URL: https://spark.apache.org/ (дата обращения: 24.01.2025).
31. What is HAWQ? Apache HAWQ (Incubating) Docs. URL: https://hawq.apache.org/docs/userguide/2.3.0.0-incubating/overview/HAWQOverview.html (дата обращения: 24.01.2025).
32. Documentation Apache Drill. URL: https://drill.apache.org/docs/ (дата обращения: 24.01.2025).
33. Trino documentation. Trino 435 Documentatio. URL: https://trino.io/docs/current/index.html (дата обращения: 24.01.2025).
34. Cardas C., Aldana-Martín J. F., Burgueño-Romero A. M. et al. On the performance of SQL scalable systems on Kubernetes: a comparative study // Cluster Comput 26. 2023. P. 1935–1947. DOI: 10.1007/s10586-022-03718-9.
35. SQL Server Analysis Services overview. Microsoft Learn. URL: https://learn.microsoft.com/en-us/analysis-services/ssas-overview?view=asallproducts-allversions (дата обращения: 24.01.2025).
36. Welcome to Kylin 5. URL: https://kylin.apache.org/5.0/ (дата обращения: 24.01.2025).
37. Pentaho Mondrian Documentation. URL: https://mondrian.pentaho.com/documentation/architecture.php (дата обращения: 24.01.2025).
38. Azevedo R., Silva J. P., Lopes N. et al. Designing an IoT-enabled data warehouse for indoor radon time series analytics. // 2022 The 17th Iberian Conference on Information Systems and Technologies (CISTI). 2022. P. 1–6. DOI: 10.23919/CISTI54924.2022.9820540.
39. Todosiev N., Yankovskiy V., Andreev A., Gapanyuk Y. The Conceptual Modeling System Based on Metagraph Approach // Proceedings of the Institute for Systems Analysis Russian Academy of Sciences. 2023. Vol. 73. № 1. P. 176–184. DOI: 10.14357/20790279230120.
40. Neo4j Graph Database & Analytics. Graph Database Management System. URL: https://neo4j.com/ (дата обращения: 24.01.2025).
41. kristianmandrup/cypher-query. URL: https://github.com/kristianmandrup/cypher-query (дата обращения: 24.01.2025).
42. Roth N. P., Trigonakis V., Hong S. et al. PGX.D/Async: A Scalable Distributed Graph Pattern Matching Engine // The Fifth International Workshop on Graph Data-management Experiences & Systems (GRADES’17). 2017. P. 1–6. DOI: 10.1145/3078447.3078454.
43. Trigonakis V., Lozi J., Faltín T. et al. aDFS: An Almost Depth-First-Search Distributed Graph-Querying System // USENIX Annual Technical Conference. 2021. URL: https://www.usenix.org/conference/atc21/presentation/trigonakis (дата обращения: 24.01.2025).
44. Faltín T. Distributed Graph Query Engine Improvements for Big Data Graphs. URL: https://dspace.cuni.cz/bitstream/handle/20.500.11956/188242/140115882.pdf (дата обращения: 24.01.2025).
45. Fan W., He T., Lai L. et al. GraphScope: a unified engine for big graph processing // Proceedings of the VLDB Endowment. 2021. Vol. 14. № 12. P. 2879–2892. DOI: 10.14778/3476311.3476369.
46. Shao B., Wang H., Li Y. Trinity: a distributed graph engine on a memory cloud // Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD ’13). 2013. P. 505–516. DOI: 10.1145/2463676.2467799.
47. Giraph – Welcome to Apache Giraph. URL: https://giraph.apache.org/ (дата обращения: 24.01.2025).
48. Malewicz G., Austern M. H., Bik A. J. C. et al. Pregel: a system for large-scale graph processing – «ABSTRACT» // Proceedings of the 28th ACM symposium on Principles of distributed computing (PODC ’09). 2009. P. 6. DOI: 10.1145/1582716.1582723.
49. hughmiao/graphlab: A framework for large-scale machine learning and graph computation. URL: https://github.com/hughmiao/graphlab (дата обращения: 24.01.2025).
Annotation:
The widespread use of various neural networks for detecting cyberattacks is hindered by the difficulty of determining their hyperparameters. Typically, hyperparameter values are established experimentally. This paper presents an approach to selecting perceptron hyperparameters for network attack detection using a genetic algorithm. Experimental results confirm the validity of this approach.To quote:
V. V. Platonov, Ya. E. Yanbarisova APPLICATION OF GENETIC ALGORITHM FOR SELECTION OF NEYRAL NETWORK HYPERPARAMETERS // Information Security Problems. Computer Systems. 2025. № 2. Pp. 112–120. DOI:10.48612/jisp/4un8-rm4g-urpnDOI:
10.48612/jisp/4un8-rm4g-urpnKeywords:
Network attack detection, perceptron, hyperparameters, genetic algorithmPages:
112–120Books list ‣‣‣‣:
1. Drewek-Ossowicka A., Pietrołaj M., Rumiński J. A survey of neural networks usage for intrusion detection systems // Journal of Ambient Intelligence and Humanized Computing. 2021. Vol. 12. № 1. P. 497–514.
2. Malyshev E. V., Moskvin D. A., Zegzhda D. P. Application of an artificial neural network for detection of attacks in vanets // Automatic Control and Computer Sciences. 2019. Vol. 53. № 8. P. 889–894.
3. Lavrova D. S. Maintaining cyber sustainability in industrial systems based on the concept of molecular-genetic control systems // Automatic Control and Computer Sciences. 2019. Vol. 53. № 8. P. 1026–1028.
4. Ali Z., Tiberti W., Marotta A., Cassioli D. Empowering network securi-ty: Bert transformer learning approach and MLP for intrusion detection in imbal-anced network traffic // IEEE Access. 2024. Vol. 12. P. 137618–137633.
5. Callegari C., Giordano S., Pagano M. A real time deep learning based approach for detecting network attacks // Big data research. 2024. Vol. 36. P. 100446.
6. Sanmorino A., Marnisah L., Di Kesuma H. Detection of DDoS Attacks using Fine-Tuned Multi-Layer Perceptron Models // Engineering, Technology & Applied Science Research. 2024. Vol. 14. № 5. P. 16444–16449.
7. Liashchynskyi P., Liashchynskyi P. Grid search, random search, genetic algorithm: a big comparison for NAS // arXiv preprint arXiv:1912.06059. 2019.
8. Adhicary S., Anwar Md M., Chowdhury M. J. M., Sarker I. H. Genetic Algorithm-based Optimal Deep Neural Network for Detecting Network Instructions // Machine Intelligence and Data Science Applications. Lecture Notes on Data Engineering and Communications Technologies. Springer, Singapore. 2022. Vol. 132. P. 145–156.
9. CICIoT2023: A real-time dataset and benchmark for large-scale attacks in IoT environment // Sensors. 2023. Vol. 23. № 13. № 5941.
10. Kalinin M., Krundyshev V., Zubkov E. Estimation of applicability of modern neural network methods for preventing cyberthreats to self-organizing network infrastructures of digital economy platforms // SHS Web of Conferences. 2018. Vol. 44. P. 00044.
Annotation:
The problem of neural network optimization for large language models, such as ChatGPT, is discussed. One of the developing directions of large language model optimization is knowledge distillation – knowledge transfer from a large teacher model to a smaller student model without significant loss of result accuracy. Currently known methods of knowledge distillation have certain disadvantages: inaccurate knowledge transfer, long learning process, error accumulation in long sequences. A combination of methods that contribute to improving the quality of knowledge distillation is considered: selective teacher intervention in the student learning process and low-rank adaptation. The proposed combination of knowledge distillation methods can find application in problems with limited computing resources.To quote:
T. M. Tatarnikova, I. A. Sikarev, V. M. Abramov COMBINATION OF METHODS OF SELECTIVE TEACHER INTERVENTION IN THE STUDENT’S LEARNING PROCESS AND LOW-RANK ADAPTATION IN THE KNOWLEDGE DISTILLATION MODEL // Information Security Problems. Computer Systems. 2025. № 2. Pp. 121–130. DOI:10.48612/jisp/339u-d6ba-5kzmDOI:
10.48612/jisp/339u-d6ba-5kzmKeywords:
Large language models, optimization, knowledge distillation, teacher model, student model, teacher intervention in the student learning process, low-rank adaptationPages:
121–130Books list ‣‣‣‣:
1. Дудихин В. В., Кондрашов П. Е. Методология использования больших языковых моделей для решения задач государственного и муниципального управления по интеллектуальному реферированию и автоматическому формированию текстового контента // Государственное управление. Электронный вестник. 2024. № 105. С. 169–179. DOI: 10.55959/MSU2070-1381-105-2024-169-179.
2. Кузнецов А. В. Цифровая история и искусственный интеллект: перспективы и риски применения больших языковых моделей // Новые информационные технологии в образовании и науке. 2022. № 5. С. 53–57. DOI: 10.17853/2587-6910-2022-05-53-57
3. Мокрецов Н. С., Татарникова Т. М. Алгоритм оптимизации моделей нейронных сетей для обработки текста на естественном языке // Прикладной искусственный интеллект: перспективы и риски: Сборник докладов Международной научной конференции, Санкт-Петербург, Россия. 2024. С. 280–282.
4. Houlsby N., Giurgiu A., Jastrzebski S. et al. Parameter-efficient transfer learning for NLP // Proceedings of the 36th International Conference on Machine Learning. 2019. Vol. 97. P. 2790–2799.
5. Мокрецов Н. С., Татарникова Т. М. Оптимизация процесса обучения при ограниченном объеме вычислительных ресурсов // Международная конференция по мягким вычислениям и измерениям. 2024. Т. 1. С. 205–208.
6. Ouyang L., Wu J., Jiang X. et al. Training language models to follow instructions with human feedback // Advances in neural information processing systems. 2022. Vol. 35. P. 27730–27744.
7. Liao B., Meng Y., Monz C. Parameter-efficient fine-tuning without introducing new latency // Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023. Vol. 1. P. 4242–4260. DOI: 10.18653/v1/2023.acl-long.233.
8. Kai Lv, Yuqing Yang, Tengxiao Liu et al. Full parameter fine-tuning for large language models with limited resources // Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024. Vol. 1. P. 8187–8198.
9. Khurana A., Subramonyam H., Chilana P. K. Why and When LLM-Based Assistants Can Go Wrong: Investigating the Effectiveness of Prompt-Based Interactions for Software Help-Seeking? // Proceedings of the 29th International Conference on Intelligent User Interfaces. 2024. P. 288–303. DOI: 10.1145/3640543.3645200
10. Белякова А. Ю., Беляков Ю. Д. Обзор задачи автоматической суммаризации текста // Инженерный вестник Дона. 2020. № 10(70). С. 142–159.
11. Швыров В. В., Капустин Д. А., Кущенко А. В., Сентяй Р. Н. Дообучение больших языковых моделей с использованием техники LoRA для решения задач статического анализа программного кода // Вестник луганского государственного университета имени Владимира Даля. 2023. №12 (78). С. 210–215.
12. Liu Zhuang, Lin Wayne, Shi Ya, Zhao Jun. A robustly optimized BERT pre-training approach with post-training // Proceedings of the 20th Chinese National Conference on Computational Linguistics. 2021. P. 1218–1227
13. Нырков А. П., Сикарев И. А. О проблемах безопасности телекоммуникационных систем на внутренних водных путях // Региональная информатика – 2008 (РИ – 2008): XI Санкт-Петербургская международная конференция, 22–24 октября 2008 г., Санкт-Петербург, Россия. СПб.: Санкт-Петербургское общество информатики, вычислительной техники, систем связи и управления, 2009. С. 230–233. EDN: WHFAYB.
14. Нырков А. П., Сикарев И. А. Безопасность информационных каналов автоматизированных систем на водном транспорте // Журнал университета водных коммуникаций. 2009. № 2. С. 165–169. EDN: MSZXKV.
15. Tatarnikova T. M., Sikarev I. A., Bogdanov P. Yu., Timochkina T. V. Botnet Attack Detection Approach in Out Networks // Automatic Control and Computer Sciences. 2022. Vol. 56. № 8. P. 838–846. DOI: 10.3103/s0146411622080259. EDN: VILOAN.
16. Sikarev A. A., Sikarev I. A., Garanin A. V. Noise Immunity of Noncoherent Reception under Complex Interference Effect on Communication and Monitoring Channels of Automated Information Systems of River Transport on Inland Waterways of the Russian Federation // Automatic Control and Computer Sciences. 2018. № 52 (8). P. 1084–1089. DOI: 10.3103/S01464116180802424.
17. Sikarev I. A., Chistyakov G. B., Garanin A. V., Moskvin D. A. Algorithms for Enhancing Information Security in the Processing of Navigation Data of Unmanned Vessels of the Technical Fleet of the Inland Waterways of the Russian Federation // Automatic Control and Computer Sciences. 2020. Vol. 54. № 8. P. 964–967. DOI: 10.3103/S0146411620080325. EDN: AKAYKV.
18. Абрамов В. М., Карлин Л. Н., Скобликова А. Л. Гармонизация российских и европейских магистерских программ в области экологического туризма в рамках Болонского процесса // Ученые записки Российского государственного гидрометеорологического университета. 2006. № 3. С. 172–183. EDN: NDSGWR.
19. Sikarev I. A., Lukyanov S. I., Popov N. et al. Digital learning technologies within geo-information management // E3S Web of Conferences, 17–19 February 2021, Chelyabinsk, Russia. Chelyabinsk, 2021. P. 01004. DOI: 10.1051/e3sconf/202125801004. EDN: GWVYAN.
Annotation:
The article discusses the security issues of the three-tier IoT architecture, consisting of the physical, network, and application layers. The emphasis is placed on the importance of protecting IoT systems from cyber attacks, which can have serious financial consequences and also affect human security. The existing possibilities of using current machine learning algorithms in order to detect and prevent cyber threats are considered. The study focuses on the two lower levels of the IoT architecture, as the application layer requires separate analysis due to a variety of attacks, including social engineering. The work is aimed at in-depth understanding of IoT vulnerabilities and at offering effective methods of overcoming them, using modern technologies.To quote:
A. M. Arbuzov, A. P. Nyrkov, A. N. Terekhov, I. V. Li, D. A. Demenev THE APPLICATION OF MACHINE LEARNING ALGORITHMS IN SECURING IOT-SYSTEMS NETWORK INFRASTRUCTURE IN WATER TRANSPORT SYSTEMS // Information Security Problems. Computer Systems. 2025. № 2. Pp. 131–142. DOI:10.48612/jisp/3zat-fd5f-vemtDOI:
10.48612/jisp/3zat-fd5f-vemtKeywords:
Machine learning, internet of things, water transportation, information security, neural networks, decision trees, IoT systems architecturePages:
131–142Books list ‣‣‣‣:
1. Dakhnovich A. D., Moskvin D. A., Zegzhda D. P. An approach to building cyber-resistant interactions in the industrial internet of things // Automatic Control and Computer Sciences. 2019. Vol. 53. № 8. P. 948–953.
2. Шипунов И. С., Нырков А. П. IOT устройства как важный аспект современного морского транспорта // Региональная информатика (РИ-2020): сб. материалов ХVII С.-П. междун. конф. Часть 1. СПб.: СПОИСУ, 2020. С. 362–364.
3. Смоленцев С. В., Буцанец А. А., Шахнов С. Ф. и др. Алгоритм анализа данных автоматической идентификационной системы для выделения типовых сценариев расхождения судов и тестирования систем автономного судовождения // T-Comm. 2024. Т. 18. № 3. С. 50–59. DOI: 10.36724/2072-8735-2024-18-3-50-59
4. Shipunov I. S., Nyrkov A. P., Evtushenko D. A. et al. Developing a Reliable Information Storage Scheme Within a Partially Unmanned Maritime Convoy // Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus 2022. 2022. P. 439–442. DOI: 10.1109/ElConRus54750.2022.9755534
5. Шипунов И. С., Нырков А. П. Умные системы – важная составляющая в вопросах автоматизации морских перевозок // Региональная информатика (РИ-2020): сб. материалов ХVII С.-П. междун. конф. Часть 1. СПб.: СПОИСУ, 2020. С. 364–366. EDN: OKWGPV.
6. Зегжда Д. П., Супрун А. Ф., Анисимов Е. Г., Анисимов В. Г. Оценка возможности модернизации систем информационной безопасности в планируемые сроки // Проблемы информационной безопасности. Компьютерные системы. 2024. № 3. С. 80–87.
7. Ерастов В. О., Зубков Е. А., Зегжда Д. П. Исследование проблем аудита информационной безопасности географически распределенных устройств интернета вещей // Проблемы информационной безопасности. Компьютерные системы. 2024. № 4. С. 42–52.
8. Sokolov S., Nyrkov A., Chernyi S., Nazarov N. Use of Social Engineering Methods in Transport: Methods, Protection, Facts, Consequences // Lecture Notes in Civil Engineering. Springer, Singapore, 2021. Vol. 130. P. 57–66. DOI: 10.1007/978-981-33-6208-6_7
9. Dakhnovich A., Moskvin D., Zegzhda D. A necessary condition for industrial internet of things sustainability // Communications in Computer and Information Science. 2022. Vol. 1544. P. 79–89.
10. Domínguez-Bolaño T., Campos O., Barral V. et al. An overview of IoT architectures, technologies, and existing open-source projects // Internet of Things. 2022. Vol. 20. № 100626. DOI: 10.1016/j.iot.2022.100626
11. Mansour M., Gamal A., Ahmed A. I. et al. Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions // Energies. 2023. № 16. № 3465. DOI: 10.3390/en16083465
12. Ahmed N., De D., Barbhuiya F. A., Hussain Md. I. MAC Protocols for IEEE 802.11ah-Based Internet of Things: A Survey // IEEE Internet of Things Journal. 2022. Vol. 9. № 2. P. 916–938. DOI: 10.1109/JIOT.2021.3104388
13. Anand P., Singh Ya., Selwal A. et al. IoT Vulnerability Assessment for Sustainable Computing: Threats, Current Solutions, and Open Challenges // IEEE Access. 2020. Vol. 8. P. 168825–168853. DOI: 10.1109/ACCESS.2020.3022842
14. Xuanxia Yao, Fadi Farha, Rongyang Li et al. Security and privacy issues of physical objects in the IoT: challenges and opportunities // Digital Communications and Networks. 2021. Vol. 7. Iss. 3. P. 373–384. DOI: 10.1016/j.dcan.2020.09.001
15. Ajiji Y. M. Internet of Thing (IOT): Data and Information (Gadget Protection). Journal of Applied Science // Engineering, Technology, and Education. 2020. Vol. 2. № 2. P. 194–203. DOI: 10.35877/454RI.asci2253
16. Staniec K., Kowal M. On Vulnerability of Selected IoT Systems to Radio Jamming – A Proposal of Deployment Practices // Sensors. 2020. № 20(21). № 6152. DOI: 10.3390/s20216152
17. Roy P. P., Teju V., Kandula S. R. et al. Secure Healthcare Model Using Multi-Step Deep Q Learning Network in Internet of Things // Electronics. 2024. № 13. № 669. DOI: 10.3390/electronics13030669
18. Karimzadeh M., Esposito A., Zhao Z. et al. RL-CNN: Reinforcement Learning-designed Convolutional Neural Network for Urban Traffic Flow Estimation // 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin City, China. 2021. P. 29–34. DOI: 10.1109/IWCMC51323.2021.9498948
19. Fatin A., Pavlenko E., Zegzhda D. Neuroevolutionary Approach to Ensuring the Security of Cyber-Physical Systems // Lecture Notes in Networks and Systems. Springer, Cham, 2023. Vol. 460. DOI: 10.1007/978-3-031-20875-1_40
20. Doyu H., Morabito R., Brachmann M. A TinyMLaaS Ecosystem for Machine Learning in IoT: Overview and Research Challenges // 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). 2021. P. 1–5. DOI: 10.1109/VLSI-DAT52063.2021.9427352
21. Atlam H. F., Walters R. J., Wills G. B. Fog Computing and the Internet of Things: A Review // Big Data Cognnitive Computing. 2021. Vol. 2. № 10. DOI: 10.3390/bdcc2020010
22. Savic M., Lukic M., Danilovic D. et al. Deep Learning Anomaly Detection for Cellular IoT with Applications in Smart Logistics // IEEE Access. 2021. P. 59406–59419. DOI: 10.1109/ACCESS.2021.3072916
23. Krishna R. R., Priyadarshini A., Jha A. V. et al. State-of-the-Art Review on IoT Threats and Attacks: Taxonomy, Challenges and Solutions // Sustainability. 2021. Vol. 13. № 9463. DOI: 10.3390/su13169463
24. Lucido S., Hummel P. Edge to Core and the Internet of Things. SAP Edge Services. DELL technologies. URL: https://infohub.delltechnologies.com/sv-se/l/edge-to-core-and-the-internet-of-things-2/sap-edge-services/ (дата обращения: 03.04.2025).
25. Lee S.-H., Shiue Y.-L., Cheng C.-H. et al. Detection and Prevention of DDoS Attacks on the IoT // Applied Sciences. 2022. Vol. 12. № 12407. DOI: 10.3390/app122312407
26. Bukhowah R., Aljughaiman A., Rahman M. M. H. Detection of DoS Attacks for IoT in Information-Centric Networks Using Machine Learning: Opportunities, Challenges, and Future Research Directions // Electronics. 2024. Vol. 13. № 1031. DOI: 10.3390/electronics13061031
27. Pheeha M., Ajayi O., Maluleke H. et al. Modelling DDoS Attacks in IoT Networks using Machine Learning // International Conference on Emerging Technologies for Developing Countries. 2021. DOI: 10.48550/arXiv.2112.05477
28. Mehta A., Sandhu J. K., Sapra L. Machine Learning in Wireless Sensor Networks: A Retrospective // 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India. 2020. P. 328–331. DOI: 10.1109/PDGC50313.2020.9315767
29. Joseph R., Swann M., Bendiab G. et al. Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT // 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan. 2021. P. 409–415. DOI: 10.1109/NetSoft51509.2021.9492685
30. Марков Г. А., Крундышев В. М., Калинин М. О. и др. Обнаружение компьютерных атак в сетях промышленного интернета вещей на основе вычислительной модели иерархической временной памяти // Проблемы информационной безопасности. Компьютерные системы. 2023. № 2. С. 163–172.
31. Sharma A., Rani S., Driss M. Hybrid evolutionary machine learning model for advanced intrusion detection architecture for cyber threat identification // PLoS One. 2024. № 19(9). № e0308206. DOI: 10.1371/journal.pone.0308206
32. Kikissagbe B. R., Adda M. Machine Learning-Based Intrusion Detection Methods in IoT Systems: A Comprehensive Review // Electronics. 2024. Vol. 13. № 3601. DOI: 10.3390/electronics13183601
33. Wang M., Yang N., Weng N. Securing a Smart Home with a Transformer-Based IoT Intrusion Detection System // Electronics. 2023. Vol. 12. № 2100. DOI: 10.3390/electronics12092100
Annotation:
Presented results of research on digitalization and automation of geoinformation support for air quality management over natural-industrial territories under climate change. The methodology of natural risk management, as well as technologies for managing geographic information databases, were used while research. A model has been developed that allows combining investment goals for the development of natural-industrial territories with the costs of geoinformation support for air quality management over natural-industrial territories under climate change, including the problem of black carbon. A modular web-based tool has been developed to implement the proposed model. Examples of using the developed approach for St. Petersburg and the Leningrad region are given.To quote:
K. S. Prostakevich, A. L. Abramova, D. A. Rychikhin, I. A. Sikarev, V. M. Abramov DIGITALIZATION AND AUTOMATION OF GEOINFORMATION SUPPORT FOR AIR QUALITY MANAGEMENT OVER NATURAL-INDUSTRIAL TERRITORIES UNDER CLIMATE CHANGE // Information Security Problems. Computer Systems. 2025. № 2. Pp. 143–153. DOI:10.48612/jisp/6vxh-19n6-2ph4DOI:
10.48612/jisp/6vxh-19n6-2ph4Keywords:
Digitalization, automation, geoinformatics, natural risks, air quality, climate changePages:
143–153Books list ‣‣‣‣:
(Russian)
1. Сикарев И. А., Абрамов В. М., Простакевич К. С. и др. Инфокоммуникационный инструментарий для управления природными рисками при мореплавании автономных судов в Арктике при изменении климата // Проблемы информационной безопасности. Компьютерные системы. 2024. № 1(58). С. 110–120. DOI: 10.48612/jisp/v28t-z3kr-nrn2. EDN: RUESZV.
2. Sokolov A. G., Abramov V. M., Istomin E. P. et al. Digital transformation of risk management for natural-industrial systems while climate change // IOP Conference Series: Materials Science and Engineering, 21–22 November 2019, St. Petersburg, Russia. St. Petersburg, 2020. P. 012003. DOI: 10.1088/1757-899X/940/1/012003. EDN: DTHAKI.
3. Sikarev I. A., Abramov V. M., Burlov V. G. et al. Northern Sea Route Development Under Climate Change and Covid-19 // Proceedings of the 37th International Business Information Management Association Conference Innovation Management and information Technology impact on Global Economy in the Era of Pandemic, 30–31 May 2021, Cordoba. Cordoba: IBIMA Publishing, 2021. P. 5147–5153. EDN: MWVXNB.
4. Vekshina T. V., Abramov V. M., Bolshakov V. A. et al. Geoinformation technologies for assessing arctic and subarctic riverbeds throughput while climate change // 19th international multidisciplinary scientific geoconference SGEM 2019: Conference proceedings, 30 June – 6 July 2019, Albena, Bulgaria. 2019. Vol. 19. P. 903–910. DOI: 10.5593/sgem2019/2.1/S08.117. EDN: SATCDX.
5. Карлин Л. Н., Абрамов В. М., Гогоберидзе Г. Г., Леднова Ю. А. Анализ социально-экономической ситуации в арктических приморских субъектах Российской Федерации на основе индикаторной оценки морского потенциала // Ученые записки Российского государственного гидрометеорологического университета. 2013. № 30. С. 181–188. EDN: REQQUB.
6. Абрамов В. М., Сикарев И. А., Честнов А. И., Буцанец А. А. Автоматизированная обработка архивов метеорологических данных с помощью программы на языке «Python» // Речной транспорт (XXI век). 2022. № 4(104). С. 53–55. EDN: JHWPCQ.
7. Istomin E. P., Sokolov A. G., Abramov V. M. et al. Clusters within geospatial information management for development of the territory // 16th International Multidisciplinary Scientific GeoConference SGEM 2016: Conference Proceedings, 30 June 2016, Albena, Bulgaria. 2016. Vol. 1. P. 601–608. DOI: 10.5593/SGEM2016/B21/S08.075. EDN: ESYLIK.
8. Istomin E. P., Abramov V. M., Sokolov A. G. et al. Information Technologies Development for Natural Risks Management within Environmental Economics // Vision 2025: Education Excellence and Management of Innovations through Sustainable Economic Competitive Advantage: Proceedings of the 34rd International Business Information Management Association Conference, IBIMA 2019, 13–14 November 2019, Madrid. Madrid: International Business Information Management Association, 2019. P. 9878–9885. EDN: LJYNAW.
9. Карлин Л. Н., Абрамов В. М. Управление энвиронментальными и экологическими рисками. СПб.: РГГМУ, 2013. 332 с. EDN: RBBBNB.
10. Нырков А. П., Сикарев И. А. О проблемах безопасности телекоммуникационных систем на внутренних водных путях // Региональная информатика-2008 (РИ-2008): XI Санкт-Петербургская международная конференция, 22–24 октября 2008 г., Санкт-Петербург, Россия. СПб.: Санкт-Петербургское Общество информатики, вычислительной техники, систем связи и управления, 2009. С. 230–233. EDN: WHFAYB.
11. Нырков А. П., Сикарев И. А. Безопасность информационных каналов автоматизированных систем на водном транспорте // Журнал университета водных коммуникаций. 2009. № 2. С. 165–169. EDN: MSZXKV.
12. Tatarnikova T. M., Sikarev I. A., Bogdanov P. Yu., Timochkina T. V. Botnet Attack Detection Approach in Out Networks // Automatic Control and Computer Sciences. 2022. Vol. 56. № 8. P. 838–846. DOI: 10.3103/s0146411622080259. EDN: VILOAN.
13. Sikarev A. A., Sikarev I. A., Garanin A. V. Noise Immunity of Noncoherent Reception under Complex Interference Effect on Communication and Monitoring Channels of Automated Information Systems of River Transport on Inland Waterways of the Russian Federation // Automatic Control and Computer Sciences. 2018. № 52 (8). P. 1084–1089. DOI: 10.3103/S01464116180802424.
14. Sikarev I. A., Chistyakov G. B., Garanin A. V., Moskvin D. A. Algorithms for Enhancing Information Security in the Processing of Navigation Data of Unmanned Vessels of the Technical Fleet of the Inland Waterways of the Russian Federation // Automatic Control and Computer Sciences. 2020. Vol. 54. № 8. P. 964–967. DOI: 10.3103/S0146411620080325. EDN: AKAYKV.
15. Sikarev I. A., Lukyanov S. I., Popov N. et al. Digital learning technologies within geo-information management // E3S Web of Conferences, 17–19 February 2021, Chelyabinsk, Russia. Chelyabinsk, 2021. P. 01004. DOI: 10.1051/e3sconf/202125801004. EDN: GWVYAN.
16. Абрамов В. М., Карлин Л. Н., Скобликова А. Л. Гармонизация российских и европейских магистерских программ в области экологического туризма в рамках Болонского процесса // Ученые записки Российского государственного гидрометеорологического университета. 2006. № 3. С. 172–183. EDN: NDSGWR.